

Date Planned : / /	Daily Tutorial Sheet - 1	Expected Duration : 90 Min		
Actual Date of Attempt ://	JEE Main (Archive)	Exact Duration :		

1. For the reaction, (2002)

 $\mathrm{C} + \mathrm{O_2} \rightarrow \mathrm{CO_2}; \ \Delta \mathrm{H} = -393 \ \mathrm{J} \ , \ 2\mathrm{Zn} + \mathrm{O_2} \rightarrow 2 \ \mathrm{ZnO}; \ \mathrm{H} = -412 \ \mathrm{J}$

Which one is correct?

- (A) Carbon can reduce ZnO to Zn
- **(B)** Oxidation of carbon is not feasible
- **(C)** Oxidation of Zn is not feasible
- (D) Zn liberates more heat than carbon during oxidation
- 2. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283.5 kJ mol⁻¹ respectively. The enthalpy of formation of carbon monoxide per mole is : (2004)
 - (**A**) −110 kJ
- **(B)** 676.5 kJ
- **(C)** −676.5 kJ
- **(D)** 110.5 kJ

(2006)

- 3. The standard enthalpy of formation ($\Delta_f H^\circ$) at 298 K for methane, $CH_4(g)$, is -74.8 kJ mol⁻¹. The additional information required to determine the average energy for C–H bond formation would be (2006)
 - (A) The dissociation energy of hydrogen molecule, H_2
 - (B) The dissociation energy of H_2 and enthalpy of sublimation of carbon
 - **(C)** Latent heat of vaporization of methane
 - **(D)** The first four ionization energies of carbon and electron gain enthalpy of hydrogen
- **4.** The enthalpy change states for the following processes are listed below:

 $Cl_2(g) = 2Cl(g);$ 242.3 kJ mol⁻¹

 $l_2(g) = 2l(g);$ 151.0 kJ mol⁻¹

ICl(g) = I(g) + Cl(g); 211.3 kJ mol⁻¹

 $I_2(s) = I_2(g);$ 62.76 kJ mol⁻¹

Given that the standard states for iodine and chlorine are $I_2(s)$ and $Cl_2(g)$, the standard enthalpy of formation for ICl(g) is:

- (A) $+244.8 \text{ kJ mol}^{-1}$ (B) $-14.6 \text{ kJ mol}^{-1}$ (C) $-16.8 \text{ kJ mol}^{-1}$ (D) $+16.8 \text{ kJ mol}^{-1}$
- 5. Standard entropy of X_2 , Y_2 and XY_3 are 60, 40 and 50 J K^{-1} mol⁻¹, respectively. For the reaction, $1/2X_2+3/2Y_2 \rightarrow XY_3$, $\Delta H=-30\,kJ$, to be at equilibrium, the temperature will be (2008)
 - (A) 1250 K
- **(B)** 500 K
- (C) 750
- **(D)** 1000 K
- **6.** In a fuel cell, methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is: (2009)

$$CH_3OH(1) + \frac{3}{2}O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$$

At 298 K standard Gibbs energies of formation for $CH_3OH(l)$, $H_2O(l)$, and $CO_2(g)$ are -166.2, -237.2, and -394.4 kJ mol⁻¹, respectively. If standard enthalpy of combustion of methanol is -726 kJ mol⁻¹,

efficiency of the fuel cell will be

- **(A)** 80%
- **(B)** 87%
- **(C)** 90%
- **(D)** 97%

7.	On the basis of the following thermochemical data $[\Delta_f G^{\circ} H^+(aq) = 0]$								(2009)		
	$H_2O(1) \to H^+(aq) + OH^-(aq); \ \Delta H = 57.32 \text{ kJ}$										
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l); \Delta H = -286.20 \text{ kJ}$										
	The val	lue of enthalpy o	of format (B)	ion of OH ⁻ ion -228.88kJ	at 25°C i	is +228.88kJ	(D)	-343.52kJ			
8.	The sta	andard enthalpy	of forma	ation of NH ₃ is	-46.0 kJ	mol ⁻¹ . If the en	thalpy o	f formation of	H ₂ from its		
	The standard enthalpy of formation of NH ₃ is -46.0 kJ mol ⁻¹ . If the enthalpy of formation of H ₂ from it atoms is -436 kJ mol ⁻¹ and that of N ₂ is -712 kJ mol ⁻¹ , the average bond enthalpy of N-H bond is NH ₃ is: (2010)										
	(A)	$-964\mathrm{kJ}\mathrm{mol}^{-1}$			(B)	$+352\mathrm{kJ}\mathrm{mol}^-$	1				
	(C)	$+1056\mathrm{kJ}\mathrm{mol}^-$	1		(D)	-1102 kJ mol	-1				
9.	The val	lue of enthalpy o	hange (∆H) for the reac	etion				(2011)		
	$C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ at 27°C is -1366.5 kJ mol ⁻¹ . The value of internal energy										
	change (A)	for the above re	eaction a	t this temperatu –1369.0 kJ	ure will b	e -1364.0 kJ	(D)	-1361.5 kJ			
10.	Consid	er the reaction,							(2011)		
	$4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g), \\ \Delta_r H = -111kJ \ . \ If \ N_2O_5(s) \ is \ formed \ instead \ of \ N_2O_5(g) \ in \ the \ above reaction, the \\ \Delta_r H \ value \ will \ be$										
	(Given, ΔH of sublimation for N_2O_5 is 54 kJ mol ⁻¹)										
	(A)	–165 kJ	(B)	+54 kJ	(C)	+219 kJ	(D)	–219 kJ			
11.	For the complete combustion of ethanol, $C_2H_5OH(l) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(l)$ the amount of he produced as measured in bomb calorimeter is 1364.47 kJ mol ⁻¹ at 25°C. Assuming ideality, the enthal of combustion, Δ_CH for the reaction will be										
	$[R = 8.314 JK^{-1} mol^{-1}]$										
	(A)	-1366.95 kJm	ol^{-1}		(B)	-1361.95 kJn	100				
	(C)	-1460.50 kJm	ol^{-1}		(D)	−1350.50 kJ r	nol^{-1}				
12.	The co	e combustion of benzene (ℓ) gives $CO_2(g)$ and $H_2O(\ell)$. Given that heat of combustion of benzene						benzene at			
	constant volume is $-3263.9\mathrm{kJmol}^{-1}$ at 25°C, heat of combustion (in kJmol^{-1}) of benzene at constant										
	pressu	ressure will be : $(R = 8.314 JK^{-1} mol^{-1})$ (201							(2018)		
	(A)	3260	(B)	-3267.6	(C)	4152.6	(D)	-452.46			
13.	For which of the following reactions, ΔH is equal to ΔU ?						(2018)				
	(A)	$N_2(g) + 3H_2(g)$	——→ 2	NH ₃ (g)	(B)	$2HI(g) \longrightarrow$	H ₂ (g) + I ₂	2(g)			

 $2\mathrm{NO}_2(\mathrm{g}) \longrightarrow \mathrm{N}_2\mathrm{O}_4(\mathrm{g})$

(C)

(D)

 $2SO_2 + O_2(g) \longrightarrow 2SO_3(g)$

14. Given: (2018)

(i)
$$2\text{Fe}_2\text{O}_3(s) \longrightarrow 4\text{Fe}(s) + 3\text{O}_2(g); \ \Delta_r\text{G}^\circ = +1487.0 \text{ kJ mol}^{-1}$$

(ii)
$$2CO(g) + O_2(g) \longrightarrow 2CO_2(g); \Delta_r G^\circ = -514.4 \text{ kJ mol}^{-1}$$

Free energy change, $\Delta_r G^{\circ}$ for the reaction

$$2\text{Fe}_2\text{O}_3(s) + 6\text{CO}(g) \longrightarrow 4\text{Fe}(s) + 6\text{CO}_2(g)$$
 will be:

(A)
$$-112.4 \text{ kJ mol}^{-1}$$
 (B) $-56.2 \text{ kJ mol}^{-1}$ (C) $-168.2 \text{ kJ mol}^{-1}$ (D) $-208.0 \text{ kJ mol}^{-1}$

15. For which of the following processes, ΔS is negative?

 $\text{(A)} \qquad \quad \text{H}_2(\text{g}) \longrightarrow 2 \text{H}(\text{g}) \qquad \qquad \text{(B)} \qquad \quad \text{N}_2(\text{g}, 1 \text{ atm}) \longrightarrow \text{N}_2(\text{g}, 5 \text{ atm})$

(C)
$$C(diamond) \longrightarrow C(graphite)$$
 (D) $N_2(g, 273 \text{ K}) \longrightarrow N_2(g, 300 \text{ K})$

16. Given: (2019)

(i)
$$C(graphite) + O_2(g) \rightarrow CO(g); \Delta_r H^\circ = x kJ mol^{-1}$$

(ii)
$$C(graphite) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \Delta_r H^\circ = y k J mol^{-1}$$

(iii)
$$CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g); \Delta_r H^\circ = z kJ mol^{-1}$$

Based on the above thermochemical equations, find out which one of the following algebraic relationships is correct?

(A)
$$z = x + y$$
 (B) $y = 2z - x$ (C) $x = y - z$ (D) $x = y + z$

17. The difference between ΔH and $\Delta U(\Delta H - \Delta U)$, when the combustion of one mole of heptane(l) is carried out at a temperature T, is equal to : (2019)

(A) -4RT (B) 4RT (C) -3RT (D) 3RT

Enthalpy of sublimation of iodine is 24 cal g^{-1} at 200°C . If specific heat of $I_2(s)$ and $I_2(\text{vap})$ are 0.055 and $0.031\text{cal g}^{-1}\text{K}^{-1}$ respectively, then enthalpy of sublimation of iodine at 250°C in cal g^{-1} is:

(A) 5.7 (B) 22.8 (C) 11.4 (D) 2.85 (2019)

19. The standard heat of formation $(\Delta_f H_{298}^{\circ})$ of ethane (in kJ/mol), if the heat of combustion of ethane, hydrogen and graphite are -1560, -393.5 and -286 kJ/mol, respectively is _____. (2020)

20. If enthalpy of atomisation for $Br_2(\ell)$ is $x \, kJ/mol$ and bond enthalpy for Br_2 is

(A) does not exist (B) is
$$x = y$$
 (C) is $x > y$ (D) is $x < y$

ykJ/mol, the relation between them:

(2020)